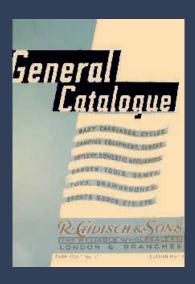
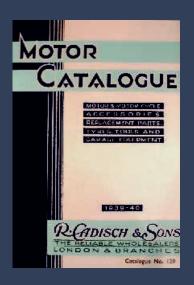


PRECISION MESHES

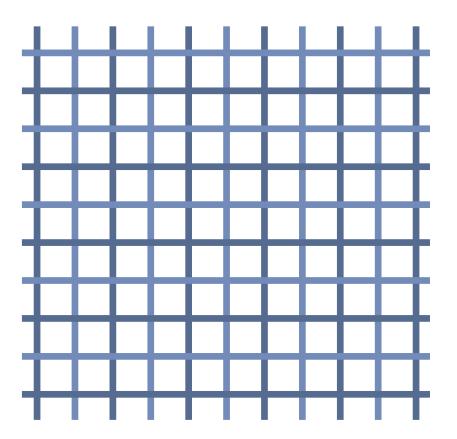
FAMILY BUSINESS ESTABLISHED IN 1883


Cadisch Precision Meshes Limited was founded in 1883 and has been owned and managed successfully by five generations of the Cadisch family. We have held three Royal Warrants of Appointment and export our products throughout the world.


We are a supplier of woven wire mesh, welded mesh, perforated sheet, synthetic filter fabrics and allied products used in the filtration, separation and screen printing industries. We are proud to be able to cater for our customers' individual requirements. Designs can be made from any of our range of filter cloths, and we would be happy to quote against your specific drawing, sketch or sample.

Cadisch is located in modern freehold premises with state-of-the-art equipment, and we have invested heavily in technology to ensure that our customers receive a high quality, competitively priced product.

We are committed to a continuous improvement to our quality, training and environmental policies which enables us to give a very personal, comprehensive and efficient service to all our customers. Broad experience in many different industries coupled with the knowledge of our specialised technical and sales teams will enable us to supply the most cost-effective solution to your requirements.



CONTACT US

CALL OUR SALES LINE ON +44(0)20 8492 0444

sales@cadisch.com www.cadisch.com

Hearle Way, Hatfield AL10 9EW

WOVEN WIRE MESH

Sometimes known as wire gauze or wire cloth – is an extremely versatile material suitable for many sieving, straining and filtering applications.

It is woven to fine limits and can be used to separate out particles of a given size.

We are specialist suppliers of woven wire mesh, carry very large stocks, in a variety of different metals and can offer a rapid and efficient service.

METALS

We hold stocks of mesh in the following metals:

STAINLESS STEEL

Withstands temperatures up to 800° C. By far the most popular where strength and durability are of prime importance. All standard meshes are stocked in Type 304 quality, and many are also available in Type 316 which is more resistant to corrosion. Certain other qualities obtainable to special order.

Range: 2-500 mesh and Hollanders.

PLAIN STEEL

A low price material for use where corrosion resistance is not important. Mostly supplied plain, but certain meshes also available galvanised. (Zinc coated)

Range: 2-80 mesh

MONEL

An alloy of nickel and copper (70/30 approx.) which combines strength with excellent resistance to acids, alkalis, sea water, etc.

Range: 20-250 mesh and Hollanders.

PHOSPHOR BRONZE

An alloy of copper and tin which is strong and durable and will resist diluted acids and alkalis. Easily soldered.

Range: 30-200 mesh.

BRASS AND COPPER

Brass, an alloy of copper and zinc, is harder but more subject to corrosion. Copper is less corrodible but, because of its softness, should not be used with abrasive substances. Both are easily soldered.

Range: 4-100 mesh.

DEFINITIONS

MESH COUNT

The number of apertures or wires in a linear inch. Most meshes are square woven and will have the same count in both warp and weft.

WARP

The wires running lengthwise in the mesh.

WEFT (OR SHUTE)

The wires running transversely across the mesh.

OPEN (OR FREE) AREA

The proportion of aperture expressed as a percentage of the whole area.

SELVEDGE

The finished edge formed by looped weft wires at either side of the cloth. Some modern shuttleless looms do not produce a looped selvedge.

SPECIFICATIONS

CHOOSING A MESH

Any required mesh count can be achieved using a number of different wire diameters, but certain combinations of mesh count and wire diameter have been accepted as standards throughout industry. These are underlined in our mesh table and are generally held in stock.

The combination of mesh count and wire diameter determines the aperture, the open area and the strength of the material. For any mesh, a thicker wire will provide a more robust weave but the aperture and open area will be reduced, giving a slower flow rate to the material passing through.

Using a thinner wire the converse will apply. If a non-standard mesh is required, it can generally be specially woven provided the quantity is sufficient.

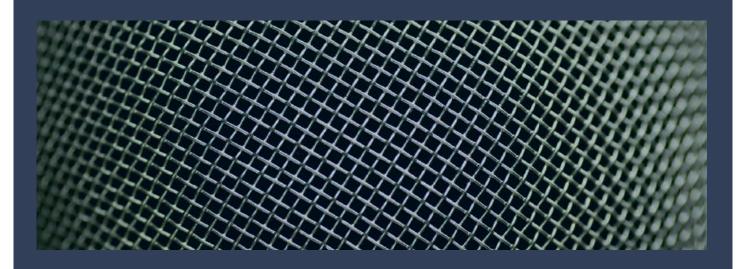
Our table indicates the range of meshes which are technically feasible. Mesh counts are generally quoted per inch, and lengths and widths are given in metric or imperial. This contrasts with the continent of Europe where the size of mesh is normally defined by the aperture in mm or microns rather than the mesh count, and all other measurements are metric.

SIZES AND SHAPES

Wire mesh is woven in rolls approximately 30.5m long and generally in widths of 1.22m, although wider or narrower widths are sometimes available. We can supply any length in the loom width, and other widths can be cut to special order. Cut pieces of mesh can be supplied to your measurements or templates in any shape and quantity.

PRICES

Woven wire mesh is priced by the square metre and price varies according to the quantity.


SCREEN PRINTING MESH

We can supply fine stainless steel mesh for screen process printing. The mesh is specially selected for its quality of weaving and freedom from blemish, and is ideal where stability and fine definition are paramount, e.g. in printed circuit work. The mesh range normally used is 165-325 plain weave.

(See separate screen printing brochure.)

USEFUL FORMULAE

Aperture (in mm) = 1/M - dWhere 'M' = mesh count per mm and 'd' = wire diameter in mm. Open area % = $[a^2/(a+d)^2] \times 100$ Where 'a' = aperture in mm and 'd' = wire diameter in mm.

MESH	WIRE DI	AMETER	APER	TURE	OPEN
COUNT	B.S. (mm)	old SWG	(mm)	(in.)	AREA %
2	3.15	(10)	9.55	0.376	57
2	2.80	(11)	9.90	0.390	61
2	2.50	(12)	10.20	0.401	64
2	2.24	(13)	10.46	0.412	68
2	2.00	(14)	10.70	0.421	71
2	1.80	(15)	10.90	0.429	74
2	1.60	(16)	11.10	0.437	76
2	1.40	(17)	11.30	0.445	79
2	1.25	(18)	11.45	0.451	81
3	2.50	(12)	5.97	0.235	50
3	2.24	(13)	6.23	0.245	54
3	2.00	(14)	6.47	0.254	58
3	1.80	(15)	6.67	0.262	62
3	1.60	(16)	6.87	0.270	66
3	1.40	(17)	7.07	0.278	70
3	1.25	(18)	7.22	0.284	73
4	2.50	(12)	3.85	0.151	37
4	2.24	(13)	4.11	0.162	42
4	2.00	(14)	4.35	0.171	47
4	1.80	(15)	4.55	0.179	51
4	1.60	(16)	4.75	0.187	56
4	1.40	(17)	4.95	0.195	61
4	1.25	(18)	5.10	0.201	64
4	1.00	(19)	5.35	0.211	71
4	0.90	(20)	5.45	0.214	74
5	1.25	(18)	3.83	0.151	57
5	1.00	(19)	4.08	0.161	64
5	0.90	(20)	4.18	0.164	68
6	1.80	(15)	2.43	0.096	33
6	1.60	(16)	2.63	0.104	39
6	1.40	(17)	2.83	0.111	45
6	1.25	(18)	2.98	0.117	50
6	1.00	(19)	3.23	0.127	58
6	0.90	(20)	3.33	0.131	62
6	0.80	(21)	3.34	0.135	66
6	0.71	(22)	3.52	0.139	69

MESH	WIRE DI	AMETER	APER	TURE	OPEN
COUNT	B.S. (mm)	old SWG	(mm)	(in.)	AREA %
8	1.25	(18)	1.93	0.076	37
8	1.12	(18.5)	2.06	0.081	42
8	1.00	(19)	2.18	0.086	47
8	0.90	(20)	2.28	0.089	51
8	0.80	(21)	2.38	0.093	56
8	0.71	(22)	2.47	0.097	60
8	0.63	(23)	2.55	0.100	64
8	0.56	(24)	2.62	0.103	68
8	0.50	(25)	2.68	0.105	71
10	1.25	(18)	1.29	0.051	26
10	1.12	(18.5)	1.42	0.056	31
10	1.00	(19)	1.54	0.061	37
10	0.90	(20)	1.64	0.064	42
10	0.80	(21)	1.74	0.068	47
10	0.71	(22)	1.83	0.072	52
10	0.63	(23)	1.91	0.075	56
10	0.56	(24)	1.98	0.078	61
10	0.50	(25)	2.04	0.080	64
12	1.00	(19)	1.12	0.044	28
12	0.90	(20)	1.22	0.048	33
12	0.80	(21)	1.32	0.052	39
12	0.71	(22)	1.41	0.055	44
12	0.63	(23)	1.49	0.058	49
12	0.56	(24)	1.56	0.061	54
12	0.50	(25)	1.62	0.064	58
12	0.45	(26)	1.67	0.065	62
12	0.40	(27)	1.72	0.067	66
14	0.56	(24)	1.25	0.049	48
14	0.50	(25)	1.31	0.052	52
14	0.45	(26)	1.36	0.054	56
14	0.40	(27)	1.41	0.056	61
14	0.335	(28.5)	1.46	0.057	65
16	0.80	(21)	0.79	0.031	24
16	0.71	(22)	0.88	0.034	30
16	0.63	(23)	0.96	0.038	36
16	0.56	(24)	1.03	0.040	42

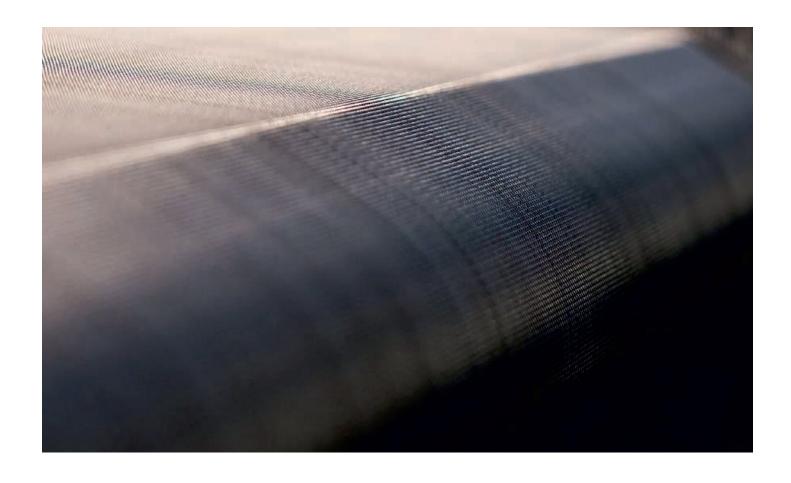
MESH	WIRE DI	AMETER	APER	TURE	OPEN
COUNT	B.S. (mm)	old SWG	(mm)	(in.)	AREA %
16	0.50	(25)	1.09	0.043	47
16	0.45	(26)	1.14	0.045	51
16	0.40	(27)	1.19	0.047	56
16	0.355	(28.5)	1.23	0.048	60
16	0.315	(30)	1.27	0.050	64
18	0.50	(25)	0.91	0.036	42
18	0.45	(26)	0.96	0.038	46
18	0.40	(27)	1.01	0.040	51
18	0.355	(28.5)	1.06	0.041	56
18	0.315	(30)	1.10	0.043	60
20	0.71	(22)	0.56	0.022	19
20	0.63	(23)	0.64	0.025	25
20	0.56	(24)	0.71	0.028	31
20	0.50	(25)	0.77	0.030	37
20	0.45	(26)	0.82	0.032	42
20	0.40	(27)	0.87	0.034	47
20	0.355	(28.5)	0.92	0.036	51
20	0.315	(30)	0.96	0.037	56
28	0.40	(27)	0.51	0.020	31
28	0.355	(28.5)	0.55	0.022	37
28	0.28	(31.5)	0.63	0.025	48
30	0.355	(28.5)	0.49	0.019	34
30	0.315	(30)	0.53	0.021	39
30	0.28	(31.5)	0.57	0.022	45
30	0.25	(33)	0.60	0.024	50
30	0.224	(34)	0.62	0.025	54
40	0.28	(31.5)	0.36	0.0140	31
40	0.25	(33)	0.39	0.0151	37
40	0.224	(34)	0.41	0.0162	42
40	0.20	(35)	0.44	0.0171	47
40	0.18	(36)	0.46	0.0179	51
40	0.16	(37.5)	0.48	0.0187	56
50	0.224	(34)	0.28	0.0112	31
50	0.20	(35)	0.31	0.0121	37
50	0.18	(36)	0.33	0.0129	42
50	0.16	(37.5)	0.35	0.0137	47
50	0.15	(38)	0.36	0.0141	49

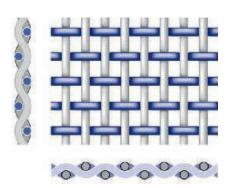
MESH	WIRE DI	AMETER	APER	TURE	OPEN AREA		
COUNT	B.S. (mm)	old SWG	(mm)	(in.)	AREA %		
60	0.20	(35)	0.22	0.0088	28		
60	0.18	(36)	0.24	0.0096	33		
60	0.16	(37.5)	0.26	0.0103	39		
70	0.15	(38)	0.212	0.0083	34		
80	0.14	(39)	0.178	0.0070	31		
80	0.125	(40)	0.193	0.0076	37		
90	0.14	(39)	0.142	0.0056	25		
90	0.125	(40)	0.157	0.0062	31		
90	0.112	(41)	0.170	0.0067	36		
100	0.112	(41)	0.142	0.0056	31		
100	0.10	(42)	0.154	0.0061	37		
100	0.09	(43)	0.164	0.0064	42		
100	0.08	(44)	0.174	0.0068	47		
120	0.09	(43)	0.122	0.0048	33		
120	0.08	(44)	0.132	0.0052	39		
140	0.08	(44)	0.101	0.0040	31		
150	0.071	(45)	0.098	0.0039	34		
150	0.065	(46)	0.109	0.0043	42		
165	0.05	(47)	0.104	0.0041	46		
180	0.06	(46)	0.081	0.0032	33		
180	0.05	(47)	0.091	0.0036	42		
200	0.05	(47)	0.077	0.0030	37		
200	0.04	(48)	0.087	0.0034	47		
230	0.035	(48.5)	0.075	0.0029	45		
250	0.04	(48)	0.062	0.0024	37		
270	0.035	(48.5)	0.059	0.0023	39		
270	0.04	(48)	0.054	0.0021	33		
300(T)	0.04	(48)	0.045	0.0017	28		
300(T)	0.036	(48.5)	0.049	0.0019	33		
325(T)	0.036	(48.5)	0.042	0.0016	29		
325	0.028	(49.5)	0.050	0.0019	41		
350(T)	0.030	(49)	0.043	0.0017	34		
400(T)	0.030	(49)	0.034	0.0013	28		
500(T)	0.025	(50)	0.026	0.0010	26		

(T)=Twill Weave

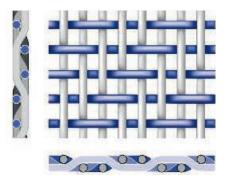
PRINCIPLE STOCK SPECIFICATIONS INDICATED BY COLOURED BARS:

TWILLED DUTCH WEAVE

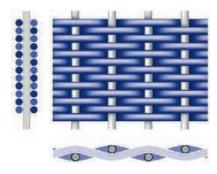

MESH	COUNT	WIRE	E DIA	MICRON
WARP	WEFT	WARP	WEFT	RETENTION
200	600	0.058	0.046	25
80	700	0.100	0.075	25
165	800	0.700	0.050	20
165	1400	0.710	0.040	15
165	1400	0.710	0.041	10
325	2330	0.350	0.025	5


REVERSE PLAIN DUTCH

MESH (COUNT	WIRE	E DIA	MICRON
WARP	WEFT	WARP	WEFT	RETENTION
86	24	0.30	0.40	150
132	36	0.20	0.40	80
175	50	0.15	0.30	60
290	72	0.09	0.20	40
625	102	0.04	0.16	25
625	130	0.04	0.13	17


PLAIN DUTCH WEAVE

MESH	COUNT	WIRE	E DIA	MICRON
WARP	WEFT	WARP	WEFT	RETENTION
12	64	0.600	0.400	300
14	88	0.50	0.300	200
24	110	0.350	0.250	150
30	150	0.230	0.180	100
30	280	0.280	0.100	90
40	200	0.180	0.140	80
40	340	0.230	0.080	78
50	400	0.160	0.068	60
50	250	0.140	0.110	50
60	490	0.160	0.058	48
80	330	0.120	0.090	40
80	400	0.125	0.071	40
80	700	0.130	0.040	34
120	930	0.065	0.030	25



PLAIN WEAVE is woven from wires of the same diameter for both warp and weft, arranged in a symmetrical "over one and under one" pattern to provide square openings of precise dimensions. Plain mesh has great dimensional stability.

TWILL WEAVE is woven so that the individual wires in one direction pass over two and under the next two cross wires. It is less rigid than plain weave and is often used in very fine meshes.

HOLLANDER (DUTCH) WEAVE is made with relatively thin weft wires packed closely together, and thicker more widely spaced warp wires. It resembles a 'basket' weave and does not have square apertures. Dimensionally very stable and having high bursting strength, it is suitable for pressure filtration where a large open area is not required.

Hollander cloth can be woven in plain, twill, or reverse twill format, in Stainless and Mild Steel.

A SELECTION OF PERFORATIONS AVAILABLE

R-0.5mm, T-1.25mm

R-1mm, T-2mm

R-1.5mm, T-3mm

R-2mm, T-3mm

R-3mm, T-5mm

R-4mm, T-6mm

R-5mm, T-8mm

R-6mm, T-9mm

R-8mm, T-12mm

R-10mm, T-15mm

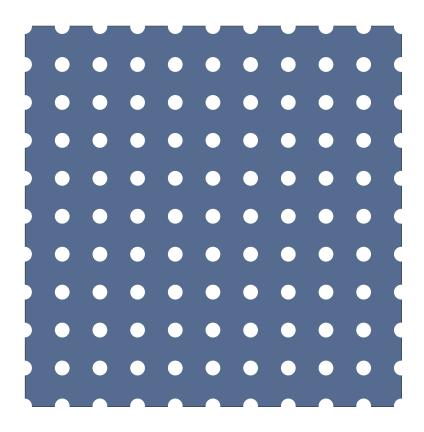
R-12mm, T-16mm

R-15mm, T-18mm

C-5mm, U-7.5mm

C-10mm, U-12mm

C-10mm, U-15mm



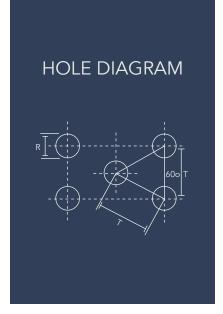
C-30mm, U-35mm

LR-20mm x 4mm

PERFORATED PLATE

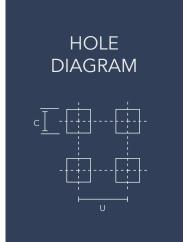
Perforated plate is manufactured by cold punching sheets of metal with an arrangement of holes of any shape and size in various patterns. There is a large variety and we only stock the more popular specifications although others are available to special order.

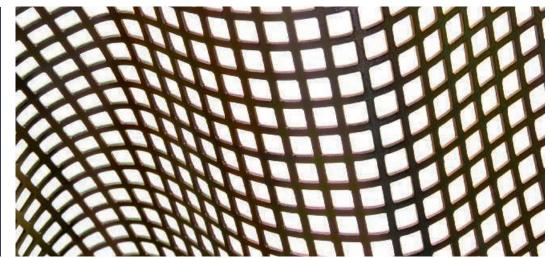
Perforated metals are used in a vast number of industries for sorting and screening any material from sugar and spice to sand and gravel. They are used extensively in heating and ventilating installations where they combine the practical with the ornamental.



 KEY
 ■ 2M X 1M
 ■ 2.5M X 1.25M
 □ 3M X 1.5M

STOCK ROUND HOLES (RT)																												
Hole Size (mm)	Pitch (mm)	Open Area						MIL	D ST	EEL								GAL'	VAN	IISEE)		ALUMINIUM					
R	Т	%	0.5	0.75	8.0	1	1.5	2	2.5	3	4	5	6	8	10	0.5	0.75	0.8	1	1.5	2	3	0.7	0.8	1	1.5	2	3
0.4	1.25	9																										
0.5	1	23	•																									
0.5	1.25	14																										
0.6	1	33																										
0.6	1.25	21	•																									
0.6	1.5	15																										
0.8	1.5	26	•	•																								
1	2	23		•	•	•											•											
1.5	2.5	33				•																						
1.5	3	23			•	i	•										•							•				
2	3	10				i		•											•						•			
2	3.5	30		•	•	•	i	i									•								•		•	
2	4	23						•																				
2.5	3.5	46						•																				
2.5	4	35				•	•	:	•																			
3	4	51				•		•											•									
3	5	33		•						•															•		•	
3	6	23														•												
3.25	5	38						•																				
3.5	5	44																										
3.5	6	31				•	•	•											•	•								
4	5	58																										
4	6	40		•				•																				
4.5	6	51		•															•									
5	6	63				•																						
5	7	46				•	•											•	•									
5	8	35		•			•	•			•										•	•			•	•		•
6	9	40					•	•		•						•	•				•							
7	9	55				•	•	•		•																		
8	12	40				•	•	•		•	•	•									•						•	
10	14	46				•	•	•											•									
10	15	40					•				•	•	•							•	•	•			•	•	•	•
12	15	58								•	_	_																
12	16	51				•		•			•																	
12	20	33						_					•	•														
15	20	51				•		•		•	•	•																•
15	25	33												•														
20	25	58				•					•								•		•						•	_
20	28	46					•			•				•							•							_
25	34	46																										
30	36	63								•																		
40	50	58								•																		
50	60	63								•																		_


KE	Y	• 21	5M X	(1.2	1.25M															
			STOCK ROUND HOLES ((RT)								
Hole Size (mm)	Pitch (mm)	Open Area	S	1IAT	VLES	SS S	TEEI	L 31	5		S	TAII	NLE	SS S	TEE	L 30	4			
R	Т	%	0.5	0.8	1	1.5	2	2.5	3		0.5	0.8	1	1.5	2	2.5	3	4		
0.4	1.25	9								•										
0.5	1	23								_										
0.5	1.25	14								•										
0.6	1.25	33									•									
0.6	1.25	15								•										
0.8	1.5	26																		
1	2	23		•							•	•	•							
1.5	2.5	33			•						•		•	•						
1.5	3	23		•	•							•	•							
2	3	10	\vdash		•								•	•	•					
2	3.5	30		•		•					•	•	•	•	•					
2	4	23					•													
2.5	3.5	46																		
2.5	4	35	•								•									
3	4	51											•							
3	5	33	•		•	•	•		•		•	•	•	•	•		•			
3	6	23																		
3.25	5	38																		
3.5	5	44																		
3.5	6	31																		
4	5	58																		
4	6	40									•		i	1			•			
4.5	6	51											•					_		
5	6	63																_		
5	7	46																		
5	8	35							•			•	i	-	i			•		
6	9	40																		
7	9	55											•	•	•		•			
8	12	40							•				ĭ				Ĭ			
10	14	46	-				_		•					•	•		•	•		
10	15	40	\vdash				•		Ĭ						Ĭ			Ĭ		
12	15	58	\vdash																	
12	16	33	\vdash																	
12 15	20	51												•			•			
15	20 25	33																		
20	25	58	\vdash																	
20	28	46	\vdash												•					
25	34	46	\vdash																	
30	36	63	\vdash																	
40	50	58	\vdash																	
50	60	63																		



KEY ■ 2M X 1M ■ 2.5M X 1.25M □ 3M X 1.5M

	STOCK SQUARE HOLES (CU) Hole Size Pitch Galvan- Galvan- Galvan- Stainless Stainless Stainless Steel 204																					
Hole Size (mm)	Pitch (mm)	Open Area		S	TEE	L			ALVA ISED		ALU	MINI	IUM	STA STE	AINLI EEL :	ESS 316	ST	AIN	LESS	STE	EL 30	04
С	U	%	0.75	1	1.5	2	3	1	1.5	2	1	1.5	2	1	2	3	0.8	1	1.5	2	2.5	3
3	5	33	•																			
3	4.5																					
4	5	58																				
4	6	40																				
5	7	63				•																
5	7.5	46	•			•		•			•	•		•			•	•	•			
5	8	35																				
6	9	40			•																	
7	9	55																				
8	10	64		•																		
8	11	53		•	•																	
8	12	40		•	•								•	•								
9	12	56														•						
9	38	5.8			•																	
10	12	70		•	•	•				•	•		•		•			•	•	•		
10	14	46		•	•		•	•	•	•								•	•			
10	15	40			•	•							•			•			•	•	•	
12	15	58																				
15	20	51				•	•															
15	25	33																				
20	25	58			•	•	•															
25	35	51				•	•															
CD 8	Z17											•										



KEY ■ 2M X 1M ■ 2.5M X 1.25M □ 3M X 1.5M

CTOCK	CLOTT	LDHOI	FS (I R7)
	ווטוכ		

Slot Size	slot length	Open Area	STAIN	LESS ST	EEL 304	G,	alvanise	ED		ALUMII	NIUM	
LR2XLR1	Z2XZ1	%	1	1.5	2	1	1.5	2	1	1.5	2	3
20X1	5X3		•									
20X1	7.2X24	23							•			
20X1.5	8X24	33							•			
20X1.5	8X25	30		•								
20X1.75	9X24	32							•			
20X2	8.4X24	35							•			
20X2	9X24	32	•									
20X2	10X24										•	
20X2.25	10X24								•			
20X2.5	11X24	37							•			
20X3	5X 3.2		•									
20X3	12X24	40							•			
20X3	12X25	38										•
20X4	16X4								•			
20X4.5	17X24								•			
20X5	18X24	44							•	•	•	
20X5	18X25	42										•
20X6	21X25								•			
20X10	32X25	45										•
25X5	16X30	50					•					
25X8	28X34	39							•			

HOLE DIAGRAM

DECORATIVE PERFORATED SHEET

MILD STEEL

Large trefoil leaf 10mm

2Mx1Mx1mm (Stock code: 500 11<u>0 510)</u>

Trefoil leaf 10mm+hole

2Mx1Mx1mm (Stock code: 500 110 512)

Pointcross 16mm

2Mx1Mx1mm (Stock code: 500 110 530)

BRASS

Large trefoil leaf 10mm

2Mx1Mx0.8mm (Stock code: 530 108 510)

Trefoil leaf 6mm

2Mx1Mx0.8mm (Stock code: 530 108 520)

Pointcross 16mm

2Mx1Mx0.8mm (Stock code: 530 108 530)

U-PROFILES

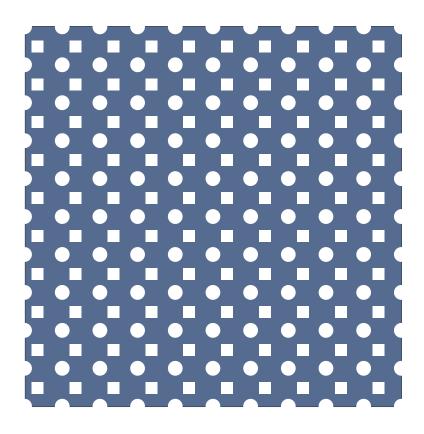
The standard solution for framing (perforated) plate, expanded metal, and some types of wire mesh.

The depth of the frame profiles means that the material being framed does not need to be cut to an exact size.

1.5	
	20
	—

U 20 - 3.0

TYPE	THICKNESS mm	INSERT DEPTH mm
U 20 - 1.5	1.5	1.5
U 20 - 2.0	1.5	2.0
U 20 - 3.0	1.5	3.0
U 30 - 5.0	1.5	5.0
U 30 - 8.0	1.5	8.0
U 40 - 10.0	1.5	10.0



MATERIAL

Steel, galvanised steel, stainless steel, aluminium.

MATERIAL THICKNESS: Approx 1 - 1.5mm for steel and approx 1 - 2mm for aluminium, depending on he size of the opening.

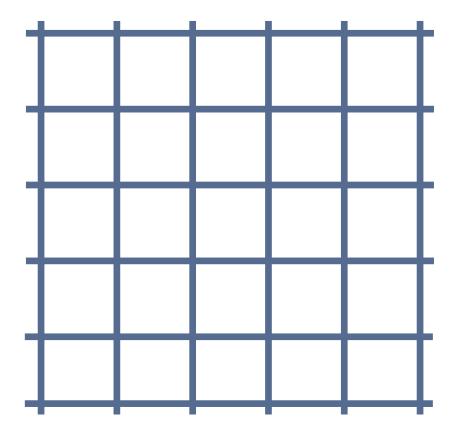
LENGTH: 2500mm

FABRICATION

FILTERS AND STRAINERS-

We can produce filters and strainers, incorporating woven wire mesh as the filter medium, to your own specifications. These are generally of welded or soldered construction.

EXTRUDER SCREENS -


We specialize in the manufacture of screens for all types of plastic extruder and screen-changer. These can be in the form of plain discs or washers, multiple screen packs of spot-welded construction or bound with aluminium or copper rims, multilayer tubes or specially profiled screens. They are produced on high-speed automatic presses and supplied in convenient consumer packs. Auto screening rolls are also available - please ask us for details.

MADE-UP SCREENS AND SCREEN RECOVERING

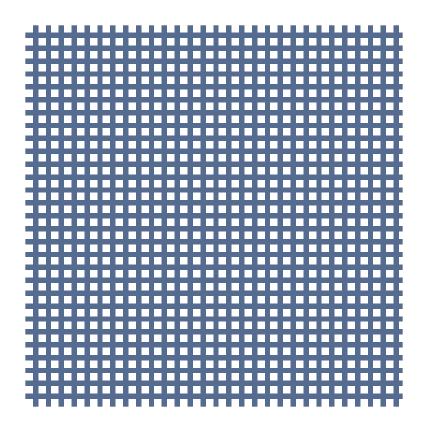
We produce screens suitable for use on vibratory and other screening plant. These are normally fitted with hook strips, eyelets or other special edging to enable them to be tensioned, or are bonded to a frame. We offer a rapid turnaround on recovering any screen from our extensive range of meshes.

WELDED WIRE MESH

Welded Wire Mesh has wide applications in the construction, agricultural and engineering industries, due to its high rigidity and strength. It is increasingly used in security applications and as machine guards.

The popular sizes are available from stock in standard sheets and rolls.

We can offer a cut to size panel service and supply non-standard mesh size to order.



WELDED WIRE MESH ————

S.S GRADE	PITCH	APERTURE (MM)	WIRE DIA	SWG	LENGTH	WIDTH
304	1/4"	5.65	0.81	21	2.44	1.22
304	1/4"	5.65	0.81	21	30.5	1.22
304	1/2"	11.7	1.00	19	2.44	1
304	1/2"	11.1	1.60	16	2.44	1.22
304	1/2"	11.1	1.60	16	30.5	1.22
304	1/2"	10.2	2.50	12	2.44	1.22
304	3/4"	16.55	3.00	10	2.44	1.22
304	1"	23.8	1.60	16	2.44	1.22
304	1"	23.8	1.60	16	30.5	1.22
304	1"	22.9	2.50	12	2.44	1.22
304	1"	22.4	3.00	10	2.44	1.22
304	1 1/2"	35.1	3.00	10	2.44	1.22
304	2"	48.3	2.50	12	2.44	1.22
304	2"	47.8	3.00	10	2.44	1.22
304	2"	45.2	4.80	6	2.50	1.22
304	3" x 1/2"	73.7 x 10.2	2.50	12	2.44	1.22
304	3" x 1/2"	73.2 x 9.7	3.00	10	2.44	1.22
304	1/2" x 3"	10.2 x 73.7	2.50	12	2.44	1.22
316	1/2"	11.1	1.60	16	2.44	1.22
316	1/2"	11.1	1.60	16	30.5	1.22
316	1/2"	10.2	2.50	12	2.44	1.22
316	1"	23.8	1.60	16	2.44	1.22
316	1"	23.8	1.60	16	30.5	1.22
316	1"	22.4	3.00	10	2.44	1.22
316	2"	47.8	3.00	10	2.44	1.22

SYNTHETIC FILTER FABRICS

MONOFILAMENT FILTER FABRICS -

Monofilament filter fabrics are ideal materials for sieving, straining or filtering most liquids, powders or sludges. The term 'Monofilament' means that each thread used in the construction of the cloth is a single smooth solid strand instead of many smaller diameter threads twisted together, as in a spun or multi-filament material. These monofilament threads are perfectly round in section and are extruded to very precise and uniform diameters.

THEIR ADVANTAGES ARE:

- A. Due to their uniformity they can be woven with great precision to give exact and regular apertures,
- B. The resulting material has a very smooth surface so that the filtered particles will easily separate from it,
- C. They have great strength and elasticity.

After weaving, our fabrics undergo a finishing process to add the properties required for specific applications. During the finishing process, the fabric is scoured to remove any foreign substances and the yarns are then stabilised within the weave in order to eliminate shrinkage by a process known as 'heat setting'.

MATERIALS -

MONOFILAMENT NYLON 6.6 FILTER CLOTH

Monofilament Nylon is a versatile material due to its great strength, flexibility, long life and resistance to abrasion. Nylon has excellent resistance to most common solvents and will operate continuously at temperatures up to 100°C in the chemical pH range 7-14. Its chemical and physical properties are shown in the table below.

MONOFILAMENT POLYESTER FILTER CLOTH

Monofilament Polyester is particularly recommended for use in manufacturing conditions in excess of 100°C. It is suitable up to a maximum working temperature of 150°C in the chemical pH range 1-7.

ALTERNATIVE MATERIALS

Although Nylon and Polyester are satisfactory for most screening applications, we also have a range of Polyethylene, Polypropylene, PTFE, Silk, Nomex, etc.

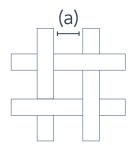
This can be produced either circular woven or with ultrasonic or hot knife welded seams in all synthetic fibres. Preformed inserts may be either ultrasonically welded or hot cut.

FILTER BAGS, SLEEVES, DISCS AND SCREENS

NEEDLEFELTS

Manufactured using layers of fiber which are 'needled' through a base scrim to produce a felt for wet and dry filtration. Classified by air permeability, weight in grammes per square metre, or by particle retention (within a range of 1 to 200 micron); Needlefelts are available in the following materials – Polypropylene, Nylon and Polyester. They can be purchased either in roll form or, more commonly, manufactured into filter bags, cloths, sleeves, etc for any make of machinery.

MONOFILAMENT FABRICS


We produce a wide range of these products, catering for our customers' individual requirements as well as the standard designs. These can be made from any of our range of filter cloths, and we would be happy to quote against your specific drawing, sketch or sample. Some of our typical products are illustrated alongside.

BAG FILTER HOUSING

Single and multi-bag filter, housing in high quality stainless steel. Suitable for all commonly used filter bags. With flow rates of up to 160m³ per hour. Please ask us for a separate brochure.

BOLTING CLOTH			MONO NYLON	DDUR® NORMAL			M(NY	ONODUI LON LIG	R® HT			Me POLYE	ONODUI STER NO	R® DRMAL			M POLYES	ONODUI TER HEA'	R® VY DUTY	
old fabric-no grit gauze	mesh opening in micron	mesh count per cm	open area %	thread diameter in micron	weight g/m²	mesh opening in micron	mesh count per cm	open area %	thread diameter in micron	weight g/m²	mesh opening in micron	mesh count per cm	open area %	thread diameter in micron	weight g/m²	mesh opening in micron	mesh count per cm	open area %	thread diameter in micron	weight g/m²
	2000	3.8 3.9	58 56	630 630	300 290						2000	4.0	64	500	265	2000	3.8	58	630	363
12 14	1800 1700 1600 1500	4.3 4.5 4.9 5.2	60 58 62 60	530 530 430 430	250 240 175 185						1600	4.9	61	430	212					
16	1400 1320	5.5	59 57	430 430	195 200						1400	5.5	59	430	236	1400	5.3	55	500	350
18	1250 1180 1120	5.7 6.2 6.4 6.7	60 58 57	370 370 370	174 177 181						1250	6.2	60	370	211					
20 22	1060 1000 950	7.0 7.6 7.9	55 58 56	370 315 315	185 150 154						1000	7.6	58	325	182	1000	6.2	39	500	430
24	900 850	8.2 8.6	55 53	315 315	158 164						900	8.0	52	300	170					
26	800 750	9.4 9.8	56 54	270 270	140 144						800	9.4	57	270	169					
28 30	710 670	10.2 10.6	52 51	270 270 270	149 154						710	10.2	52	270	188					
32	630 600	11.1 11.5	49 48	270 270	160 165	600	13.3	64	150	74	630	11.1	49	270	181					
34 36	560 530	13.0 13.5	53 51	210 210	117 121			0.	.00	, ,	560	13.5	57	215	160					
38	500	14.0	50	210	125						500	14.0	47	230	174					
40 42	475 450	14.7 15.2	48 47	210 210	132 136															
44 46	425	15.8	45 43	210	140 145	400	17.1	47	180	123	400	16.4	43	215	175	400	15.4	38	250	255
48 50	375 355	17.1	41 48	160	155 112						355	19.4	48	160	155	355	16.0	32	250	285
52 54 56 58	335 315 300	20.2 21.0 23.2	46 44 49	160 160 130	115 120 76						315	21.0	44	160	145	315	20	39	200	182
60	280	24.4	47	130	82						280	24.4	47	130	93					
62 64	265	25.3	45	130	86	265	26.0	47	100	61	265	25.0	44	130	95					
66 68	250	26.3	43	130	89						250	26.3	43	130	99					
70 72	236 224	27.3 30.4	42 46	130 105	92 76						224	30.4	46	105	93					
	212 200	31.5 32.8	45 43	105 105	78 80						212 200	29.0 32.8	38 43	130 105	108 97					
	190 180	37.0 38.5	50 48	80 80	51 53						180	37.0	44	90	90					
	170 160	40.0 42.0	46 44	80 80	56 58						160	42.0	45	80	70					
	150 140	43.5 45.0	43 40	80 80	59 60						140	45.0	40	80	73					
	132 125	47.0 49.0	39 37	80 80	63 66						125	49.0	38	80	80					
	118 112	51.0 52.0	36 34	80 80	68 72	112	62.0	48	50	34	118 112	56.0 60.0	43 45	60 60	52 65					
	106	55.0	34	75	60															
	100 95	56.0 58.0	33	75 75	62	106 95	60.0	40 48	60 50	56 37	100	56.0	31	70	75					
LA QUAL.	90 85	60.5 62.0	30 28	75 75	65 67	85	77	43	45	29	90	68.0	37	55	68					
20	80	64.5	27	75	69						80	77.0	38	48	42	80 75	73.0 68.0	34 27	55 70	70 70
	71	86.0	37	45	31	67	104.0	49	30	28	71	90.0	41	40	36	71	80.0	32	55	64
25	63	93.0	34	45	35						63	92.0	37	40	39	63	90.0	32	48	68

BOLTING CLOTH			MONC NYLON I	DUR® NORMAL			MONODUR® NYLON LIGHT				MONODUR® POLYESTER NORMAL					MONODUR® POLYESTER HEAVY DUTY				
old fabric-no grit gauze	mesh opening in micron	mesh count per cm	open area %	thread diameter in micron	weight g/m²	mesh opening in micron	mesh count per cm	open area %	thread diameter in micron	weight g/m²	mesh opening in micron	mesh count per cm	open area %	thread diameter in micron	weight g/m²	mesh opening in micron	mesh count per cm	open area %	thread diameter in micron	weight g/m²
	F./	100.0	24	4.5	20						60	100.0	36	40	40	F /	00.0	25		70
	56	100.0	31	45	38						56	110.0	38	35	33	56 53	90.0 80.0	25 18	55 70	72 100
	50	111.0	31	40	27						50	120.0	36	35	35	50	110.0	30	40	45
	45 42.5	118.0 122.0	28 26	40 40	30 31											45	120.0	29	40	48
	37.5	129.0	23	40	34	40	143.0	33	30	23	40	133.0	28	35	39	40 37.5	125.0 90.0	25 11	40 70	50 104
	35.5 33.5	143.0 147.0	25 24	35 35	25 26	35.5	153.0	29	30	24	35.5	142.0	25	35	41	35.5	130.0	21	40	52
	31.5 30.0	152.0 165.0	23 25	35 30	27 30						30	165.0	25	30	40	30	150.0	21	35	38
	22.4	100.0	1/	20	22						22.4 20 15	180.0 185.0	16 15	30 30 35	53 45 48					
	22.4 20 15	180.0 185 195	16 14 9	30 30 30	33 38 45						15	200.0	9	33	40	10 5 3	200.0 220.0 220.0	4 1.2 0.4	40 40 42	80 88 88

APERTURE SIZES Our standard filter cloths range from 2,000 micron to 3 micron aperture, the measurement being made across the square between the insides of adjacent threads, as shown.

LENGTHS AND WIDTHS Full roll length approximately 100 meters but any length can be cut to order. Our standard stock width is 1m and 1.5m but other widths are often available or may be woven to special order.

Please note: 1 micron = 1/1000th part of 1 millimetre

TECHNICAL FILTRATION FABRICS

POLYNOVA® TECHNICAL FILTRATION FABRICS

Polynova® Technical Filtration Fabrics are produced in a wide variety of materials including polyester, polyamide (nylon) and polypropylene. The fabrics are specifically designed to be used in a broad spectrum of applications in industries spanning chemicals, wine and juice production, waste water and sewage treatment, ceramics and food.

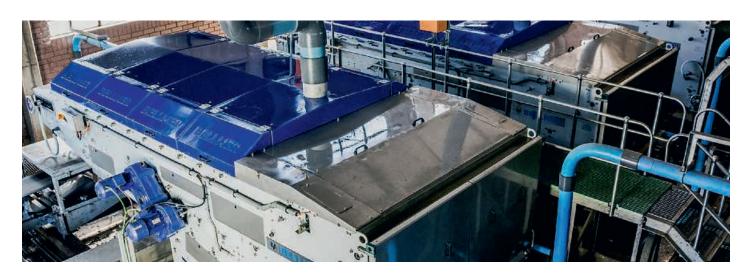
Polynova® technical fabrics are made in a variety of weave constructions and permeabilities. Their wide selection makes it possible to provide for any specific application.

POLYNOVA® FILTER BELTS AND PRESS CLOTHS

Polynova® Filter Belts and Press Cloths were developed in close co-operation with machine manufacturers and end-users especially for applications in liquid/solid separation and dewatering of suspended solids. These applications include the product extraction in the chemical industry and ceramic industries, in metallurgy and mineral mining. They are used for extraction of phosphoric acid and fertilizers, for filtration of aluminium hydroxide, for coal washing, as well as for specific filtration in flue gas desulphurization.

Polynova® fabrics can be converted for use on systems such as vacuum filter belt units, gravity belt thickeners, pan filters, filter presses and fluid bed driers plus many more.

FILTER BELT JOINTS/FINISHING

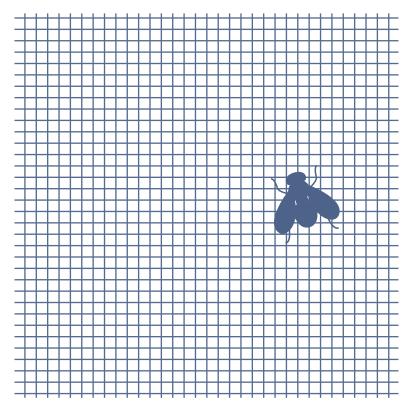

We produce a complete range of connecting joints for all fabrics that are designed for use as filter belts. The joints are available in a number of forms and materials ranging from wholly synthetic to stainless steel. The synthetic joints can be produced to match the material of the belt. These are generally used for lighter applications, or where the presence of metal is detrimental to the given process. Stainless steel joints are fitted to the heavier range of fabrics and where physical strength is of importance. They are available in the "clipper" and "alligator" styles with a resin-fill protection layer.

All belts are fitted with the optimum joint for their application and come complete with the appropriate joining/pintle wire.

We can also supply joints which are hand woven together on the ends to produce what is, effectively, an endless belt. Such joints are beneficial in areas where a joint line would compromise the finish of the product. It should be noted that it is only possible to fit these belts to machines with available access.

The edges of the belts are produced with a heat seal plus a neoprene/resin fill band where required, to prevent fraying and reduce wear.

Further information may be obtained by calling our office.


PHYSICAL PROPERTIES	POLYAMIDE (6.6 NYLON)	POLYESTER	POLYETHYLENE	POLYPROPYLENE	POLYVINYLCHLO- RIDE (PVC)				
MAX WORKING TEMP. °C	100	150	60	70	60				
SHORT TERM WORKING TEMP.°C	150	180	90	100	70				
MELTING POINT °C	255	256	120	165	150				
SOFTENING POINT °C	235-240	230	110	150	70				
SPECIFIC GRAVITY	1.14	1.38	0.95	0.92	1.38				
TENSILE STRENGTH N/mm2	70-100	95-130	50-60	22-55	20-40				
ELONGATION TO BREAK %	15-25	10-20	15-30	15-30	14-60				
MOISTURE ABSORPTION % AT 20 °C	3.5-4.5	0.4	0	0	0-0.2				
U.V. RESISTANCE	FAIR	GOOD	POOR	LOW	V. GOOD				
ABRASION RESISTANCE	V. GOOD	V. GOOD	POOR	AVERAGE	POOR				
CHEMICAL PROPERTIES AT 20 °C									
ACETIC ACID, CONC.	_	/	/	/	/				
SULPHURIC ACID 20%	_	/	/	/	?				
NITRIC ACID 10%	_	?	/	/	/				
HYDROCHLORIC 25%	_	?	/	/	?				
SAT. SODIUM CARBONATE	/	/	/	/	?				
CHLORINE CONC.	_	/	/	?	/				
CAUSTIC SODA 25%	?	_	/	/	?				
AMMONIA, CONC.	/	_	/	/	?				
POTASSIUM PERMANGANATE	_	/	/	?	?				
FORMALDEHYDE, CONC.	/	/	/	/	?				
CHLORINATED HYDROCARBONS	/	/	?	?	?				
BENZENE	/	/	?	?	_				
PHENOL	_	?	?	?	_				
KETONES, ACETONE	/	/	?	?	?				

✓ = recommended

? = conditional

= unsatisfactory

* = resistance is generally lower at higher temperature

INSECT PROOF SCREENING

Our range of fly screening is used throughout the world and is used in many different ways in order to control the passage of all forms of insect and reptile life - as well as enabling companies and individuals to comply with increasingly stringent controls on health and safety, food hygiene and environmental regulations.

We offer here a selection of the most popular materials together with their technical specifications.

FIBREGLASS

Fibreglass insect screening is constructed using a fibreglass yarn with a vinyl coating in proportion 38% / 62% by weight. Fibreglass is the most widely used type of fly screening material and is very easy to work with because it is pliable and easy to cut.

It is available in either grey or charcoal, but charcoal is increasingly popular because it is easier to see through from the inside and is less visible from the outside.

It is an inexpensive material; however, certain applications may require other materials, as outlined in this brochure.

TECHNICAL SPECIFICATIONS

MATERIAL:	Fibreglass with vinyl coating		
MESH COUNT PER INCH:	18X16	20X20	20X30
COLOURS	Charcoal or grey	Charcoal	Charcoal
STANDARD ROLL LENGTHS:	30m alternatively 50m	30m	30m
STANDARD ROLL WIDTHS:	1.2m, 1.8m	1.2m	1.2m
WEIGHT:	120 grams per square metre		
OPEN AREA:	65.7%	55%	47%
THREAD DIAMETER:	0.28mm	0.33mm	0.33mm

ALUMINIUM ———————

Aluminium is a popular alternative to fibreglass as it is more durable but is more expensive than fibreglass and not so easy to work with.

TECHNICAL SPECIFICATIONS

MATERIAL:	Aluminium
MESH COUNT PER INCH:	18X16
WIRE DIAMETER:	0.28 mm
COLOURS:	Bright natural finish
STANDARD ROLL LENGTH:	30m
STANDARD ROLL WIDTH::	1.22m
OPEN AREA:	65%
APERTURE:	1.30X1.13mm

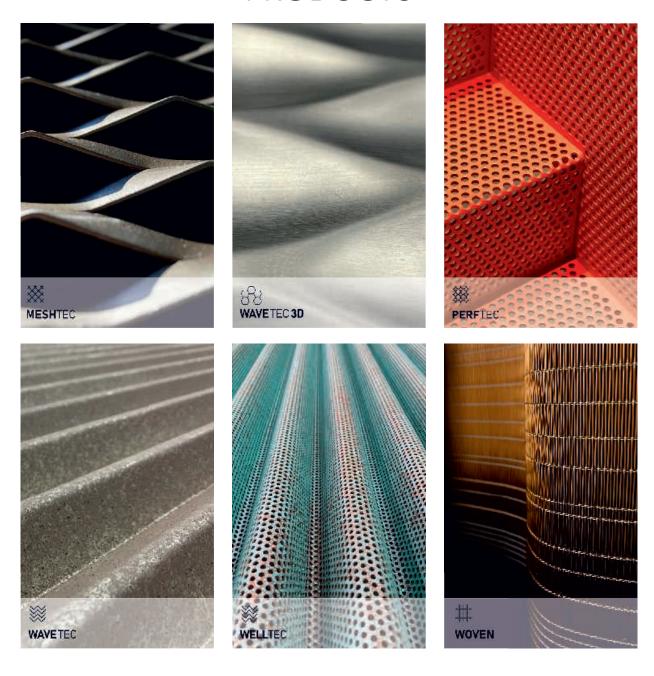
STAINLESS STEEL —

Stainless steel is the most durable of the materials here and has excellent resistance to corrosion.

TECHNICAL SPECIFICATIONS

MATERIAL:	Stainless Steel AISI 304
MESH COUNT PER INCH:	18X14
WIRE DIAMETER:	0.22 mm
STANDARD ROLL LENGTH:	30m
STANDARD ROLL WIDTH::	1.22m
OPEN AREA:	74%
APERTURE:	1.35mm x 1.10mm

PETMESH ——


MATERIAL:	Polyester with Vinyl coating
MESH COUNT PER INCH	17x10
COLOURS	Charcoal or Grey
ROLL LENGTH	30m
ROLL WIDTH	1.2m
THREAD DIAMETER	0.63mm

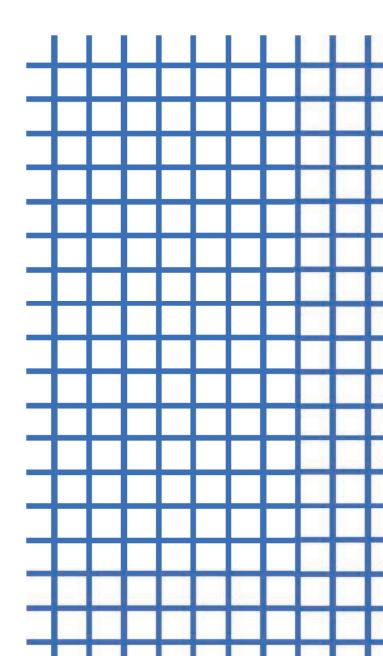
This division of the Cadisch Group evolved from Cadisch Precision Meshes, a family company with over 139 years heritage of metals and meshes.

Cadisch MDA is a highly experienced and respected supplier of metals and special finishes for design and architecture from bespoke single panels to large scale cladding projects. An extensive and diverse range of products and finishes giving inspirational ideas and opportunities to the design community. We offer an extensive and diverse range for both interior and exterior applications, inspiring design concepts whilst maintaining the integrity of a project.

PRODUCTS

Vitramesh® allows a variety of thinner meshes to be laminated within glass or acrylic resin to create a whole new form of cladding or feature screens.

PROJECTS



CALL OUR SALES LINE ON +44(0)20 8492 0444

sales@cadisch.com www.cadisch.com

Hearle Way, Hatfield AL10 9EW

